Media Technology MSc

Scientific Narration & Visualization

Teacher(s) Bas Haring
Course Level 500
ECTS Credits 4
Number of Classes 10
Examination To be announced in class
Learning goals

This course focuses on the last part of a scientific project: presenting results and explaining insights. Hence, it can be seen as an extension of the course Creative Research. As that course deals with unconventional scientific questions and research methods, the course Scientific Narration and Visualization deals with unconventional ways of conveying scientific insights. I.e. all forms besides scientific articles and scientific posters. This course is different compared to e.g. data visualization as it deals with conveying understanding instead of data. The main learning goal of this course it to make students aware of the drawbacks and advantages of the various forms, such that they will be able to use the most appropriate form for their case. My goal this year is to get input for a textbook on this matter.

Structure of lessons

Each lesson consists of three parts. In part one we discuss the assignments of the previous week. Starting from lesson IV as only after lesson III the homework assignments start. I will select three works that we will discuss in class. So be prepared to present your assignment. In part two we will discuss the reading material of that week. And in part three, I will present series of examples that illustrate the reading material of that week.

Mode of Instruction

Lectures, self study

Assessment Method

There is a weekly assignment running five times, starting after lesson III. And there is a larger assignment to end this course with. Both assignments count for 50% of the final grade. The weekly assignment has the following form: select the form that was discussed in class, and combine that form with a scientific topic, in order to explain (part of) that topic. You can use the suggestions from the following table, but you may also try your own topic, as long as it belongs to the natural sciences. I won’t provide reading material for the underneath topics; it is your responsibility to study the topic of your choice.


Not applicable

Reading List

Understanding understanding:

  • Metaphors we live by, G. Lakoff & M. Johnson (1980), p1-55.
  • Understanding by design, G. Wiggins & J. McTighe (2005), p35-55.
  • Understanding needs embodiment, K. Niebert, S. Marsch & D. Treagust (2012).


  • The Oxford book to modern science writing, R. Dawkins (2008), p232-266.
  • Using narratives and storytelling to communicate science with nonexpert audiences, M. Dahlstrom (2014), PNAS, Sep.16, 2014, Vol. 111, p13614-13620,
  • Storytelling, M. Krzywinski & A. Cairo (2013), Nature methods, Vol 10, No. 8, p687. Plus comments in the same journal! (Against storytelling & Should scientists tell stories?)
  • The Role of Narrative in Communicating Science, L. Avraamidoua & J. Osborne (2009), International Journal of Science Education Vol. 31, No. 12, p1683-1707.


  • Aristotle’s ladder, Darwin’s tree, J.D. Archibald (2014), p1-21.

Graphs & infographics:

  • Envisioning information, E.R. Tufte (1990), ch4&6.
  • The Visual Display of Quantitative Information, E.R. Tufte (2001), p40-43.
  • Trees, Maps & Theorems, J-l Doumont (2009).

Film, play & animation :

  • Dynamic visualizations and learning, R. Ploetzner et al. (2004), p235-240 & p343-351.
  • Animation: can it facilitate? B. Tversky & J.B. Morrison (2002).

Experiments & objects:

  • Experiments in science and science teaching, D. Hodson (1988), Educational philosophy and theory, 20:2, p53-66.
  • Wandering seminar on scientific objects, S. Vackimes & K. Weltersbach (2007), p19-34 & p129-139.

Via programme coordinator Barbara Visscher-van Grinsven:, 071-527 6994