
Videostreaming with Gstreamer
Arnaud Loonstra
Leiden University

arnaud@sphaero.org

ABSTRACT
In this document, we explore videostreaming technologies
using the Gstreamer framework. Since videostreaming is
becoming a commodity it is available for anybody to
utilize. However videostreaming technology can be
challenging as it can be highly complex. In this document
we will introduce the elements needed for videostreaming
on a network. We will focus our efforts onto setting up live
videostreaming between two hosts.

1. PURPOSE, CONTEXT AND HISTORY
Videostreaming is available in every consumer mobile
phone and every home computer. It is used for
teleconferencing, live broadcasting, on-demand television,
remote gaming, wireless videoprojection, surveillance
cameras, remote drone control, etcetera. The first streaming
systems stem from 1920 but only since the late '90s video
streaming has become a commodity as technology
progressed and standards emerged.

There are many out-of-the-box videostreaming software
packages available. (e.g. VLC, Ustream, Justin.tv) These
can be very easy to operate and might suit your purpose
perfectly. However it is when you run into the limits of
these packages that you need to understand what is going
on behind the scenes. The purpose of this document is to
introduce you to the technology behind the scenes using the
Gstreamer framework.

2. OPERATING PRINCIPLES
Streaming technology usually refers to sending large
streams of data between systems. Because the data is too
big to send in one go it is cut in to smaller packets of data.
These packets are then send sequentially. In order to
decrease the size of the data it is often compressed.

The operating principle of videostreaming is the same.
Basically a video is compressed and then send in packets
through a transport.

There are two methods of compressing video data. The first
is 'Inter-Frame' based compression. Think of this as saving
every image in the video as a JPEG image. An example
compression algorithm that works accordingly is Motion-
JPEG. Other examples are DV and HuffYUV. The second
method is 'Intra-Frame' based compression and uses the the
differences in images. If you start with an image the 'Intra-
Frame' based method only tracks the differences in the
following frames. Some highly sophisticated algorithms
have been developed over the years of which the most used

one is H.264. Other examples include Theora, Xvid and
Divx. Compression algorithms for video are often referred
to as a 'codec'.

To transport the stream of of video data packets there are
many possibilities. In TCP/IP networks an UDP transport is
the most simple solution. The RTP protocol is a transport
protocol on top of UDP. Nowadays HTTP is also often used
as a transport for streaming video.

3. STRENGTHS AND WEAKNESSES
With digital video technologies many parameters are
involved which have a broad range of consequences. We
could dive into the discussion of whether IP networks are
designed for streaming technologies however we rather
focus on the implications of the codecs and the transports
on top of IP networks as that's the practical situation we will
be exposed to. In this document we will be exploring the
Motion-JPEG and H.264 codec on top of RTP transports.

To transport the videostream we already introduced UDP.
As UDP does not guarantee delivery nor order it's only
suitable for situations where speed and minimal bandwidth
are a top requirement. However usually you do want the
right order of packets if the packets do make it across. The
RTP protocol provides this on top of UDP. Therefore the
RTP protocol is better suited for transporting videostreams.
The HTTP protocol was never designed to do streaming.
However as a lot of firewalls block everything except
HTTP, HTTP is nowadays used for everything thus
including videostreaming.

When it comes to compressing video the Motion-JPEG
compression is a common 'Inter-Frame' compression
method which simply consists of compressing to JPEG
images. This is very suitable for situations where you need
fast encoding and decoding. As it's based on single frames
Motion-JPEG is also very suitable to seek through the
video.

Seeking through a video is much more difficult when the
compression is 'Intra-Frame' based. This method uses the
changes in sequential frames. Before finding a frame at a
certain position in the video the seek method first needs to
find a full frame (keyframe) and from there calculate the
differences to the position. The H.264 is a codec based on
the differences in frames and therefore less suited for
situations where you do a lot of seeking in the videostream.
However when it comes to bandwidth the H.264 codec is
the clear winner compared to Motion-JPEG. We'll see the

differences in bandwidth further on. The H.264 codec was
designed for streaming. It provides many parameters to
tweak the compression to specific needs. There are too
many parameters to manage H.264 but luckily most
encoders provide presets. We'll be using these presets to do
our encoding.

4. TYPICAL APPLICATIONS
The band "Severe Tire Damage" performed at Xerox Parc
in 1993 while being streamed through the internet. This is
one of the first mentioned internet videostreaming events.
Videostreaming is used in many domains nowadays of
which of course television is the first that comes to mind.
But other examples include streaming your videos on your
mobile to your television or your presentation to the video
projector. Nowadays a lot of research is done is for remote
gaming. The computer you play on is located somewhere in
a datacentre while you play it at home on your television.
For these applications the latency if of utmost importance.

The basic application of videostreaming is sending any
picture to one or more receivers.

5. SURPRISING APPLICATIONS

The landing of NASA's Curiosity Rover was broadcasted
live from Mars. The latency of the videostream was about
14 minutes because of the distance. For the scientists
involved this was called the “7 Minutes of Terror” as
getting from the top of the atmosphere to the surface of
Mars was about 7 minutes. So any first signal from
Curiosity descent would mean it could be already dead for 7
minutes.

6. GETTING STARTED
To use the Gstreamer framework it's easiest to install it on a
Linux system. In this example we are using Ubuntu but the
steps should be similar on other platforms. To make sure the
framework is installed run the following command in the

terminal:

sudo apt-get install gstreamer1.0-tools \
 gstreamer1.0-plugins-base \
 gstreamer1.0-plugins-good \
 gstreamer1.0-plugins-bad \
 gstreamer1.0-plugins-ugly

To have a basic understanding of the Gstreamer framework
you need to think of it as a pipeline. The video data starts at
the source and moves to the sink. Meanwhile you can do
many things with the videodata. Each chain in the pipeline
is called an element.

To construct a pipeline we have a very simple command
line tool called 'gst-launch'. The most simple pipeline would
be a simple test video display which consists of the
following elements:

1. videotestsrc. A simple element creating a test
image

2. autovideosink. A display element which needs no
configuring

To create this pipeline run the following command:

gst-launch-1.0 videotestsrc ! autovideosink

The 'gst-launch-1.0' command uses the exclamation mark
(!) to link elements to each in order to create a pipeline.

In our videostreaming setup between two hosts we already
know what we need our pipeline to do. On the sending side
we need to:

1. acquire the video data

2. compress the video data

3. cut the data into smaller packets

4. send the packets out through a network transport

On the receiving side we than want to:

1. receive the packets from the network transport

2. reassemble the packets into video data

3. decompress the video data

4. display the video

To construct this pipeline you first need to find the elements
that can do this. In general it is best to lookup the gstreamer
plugin documentation to find the elements you need. In the
case of a Motion-JPEG streaming setup using RTP we need
the following elements:

Still from the descent of Curiosity Rover.
Image credit: NASA/JPL-Caltech/MSSS

1. 'videotestsrc' & 'autovideosink' to genereate and
display an image

2. 'jpegenc' & 'jpegdec' to encode to and decode from
JPEG

3. 'rtpjpegpay' & 'rtpjpegdepay' to create the RTP
packets

4. 'udpsrc' & 'udpsink' to transport the RTP packets
using UDP

Run the following two commands for the sender and the
receiever:

Sender:

gst-launch-1.0 videotestsrc ! \
 jpegenc ! \
 rtpjpegpay ! \
 udpsink host=127.0.0.1 port=5200

Receiver:

gst-launch-1.0 udpsrc port=5200 ! \
 rtpjpegdepay ! \
 jpegdec ! \
 autovideosink

You'll notice that the receiver will quit immediately with an
error. This is because we need to tell the 'rtpjpegdepay'
element some information about the data it will receive.
This is called a 'capsfilter' in Gstreamer terms. A capsfilter
is placed between the 'pads' of connecting elements. In
Gstreamer events can transfer up and down the pipeline.
These events can be used to pause the pipeline for example
but it can also be used for exchanging the capabilities.

This looks a bit puzzling but just think of it as setting some
required parameters the elements in the pipeline need in
order to connect to each other:

gst-launch-1.0 udpsrc port=5200 ! \
 application/x-rtp,\
 encoding-name=JPEG,payload=26 ! \
 rtpjpegdepay ! \
 jpegdec ! \
 autovideosink

Now that we have an example stream working we can
replace the 'videotestsrc' with a webcam. On a Linux
system we can use the 'v4l2src'. We will need a capsfilter to
set the webcam's resolution.

gst-launch-1.0 v4l2src !
 video/x-raw,width=640,height=480 ! \
 jpegenc ! \
 rtpjpegpay ! \
 udpsink host=127.0.0.1 port=5200

This gives us a nice feedback on the latency involved in this
stream. The bandwidth used is about 1800 kbit/s. If we now
try a default h.264 encoder you will notice difference.

Sender:

gst-launch-1.0 v4l2src ! \
 video/x-raw,width=640,height=480 ! \
 x264enc ! h264parse ! rtph264pay ! \
 udpsink host=127.0.0.1 port=5000

Receiver:

gst-launch-1.0 udpsrc port=5000 ! \
 application/x-rtp,\
 encoding-name=H264,payload=96 ! \
 rtph264depay ! h264parse ! avdec_h264 ! \
 autovideosink

First, it might take very long for the image to show. This is
because the stream first needs to receive a full keyframe.
Second, your computer might not be able to cope with the
encoding and decoding. Third, the latency is much higher
(+5s) compared to the Motion-JPEG pipeline. On the other
hand the bandwidth is much lower. About 300 kbit/s. We
can tweak the parameters of the x264 encoder (sender) to
make it more suitable for live streaming. You can find out
which parameters you can set using the 'gst-inspect'
command. Just try the following 'gst-inspect' command and
match the output with the next 'gst-launch' example.
Running 'gst-inspect' with no arguments will list all
available elements.

gst-inspect-1.0 x264enc

gst-launch-1.0 v4l2src ! \
 video/x-raw,width=640,height=480 ! \
 x264enc tune=zerolatency byte-stream=true \
 bitrate=3000 threads=2 ! \
 h264parse config-interval-1 ! \
 rtph264pay ! udpsink host=127.0.0.1 port=5000

The bandwidth now stays about the same (350 kbit/s) but
the latency is much improved as well as the burden on the
machine running it.

To conclude these example pipelines we still need to know
the latencies involved in the pipelines. I will provide a
recipe to explore yourself as you now should be able to find
out what all these elements do. Basically the recipe
constructs a videostreaming setup which is displaying the
image with a timestamp on the source computer as well as
on a remote system. The difference in the timestamp
corresponds with your latency of the pipeline.

Sender:

gst-launch-1.0 v4l2src ! \
 video/x-raw,width=640,height=480 ! \
 timeoverlay ! \
 tee name="local" ! \
 queue ! \
 autovideosink local. ! \
 queue ! jpegenc! rtpjpegpay ! \
 udpsink host=127.0.0.1 port= 5000

Receiver:

gst-launch-1.0 udpsrc port=5000 ! \
 application/x-rtp,\
 encoding-name=JPEG,payload=26 ! \
 rtpjpegdepay ! jpegdec ! autovideosink

7. FINAL THOUGHTS
This document introduced you into the technologies
involved in video streaming across networks. The
Gstreamer framework was introduced and you should now
be confident to experiment with different pipeline setups.

Not everything was explained as video streaming
technologies is an engaging subject. As this paper only
covered videostreaming no audio was involved. However in
many videostreaming situations you do want audio.
Therefore you need to understand that in those cases a data
stream needs to contain both video and audio. The process
of combining and splitting the audio and video data is
called 'multiplexing'. The elements doing this process are
called a 'muxer' and a 'demuxer'.

If you want to use the Gstreamer Framework in your own
program I urge you to read the official Gstreamer tutorials.
The process is exactly the same as explained in this
document but provides many more options. As long as you
understand the basic principles and commands introduced
in this document you should be able to code any pipeline.

REFERENCES
1.Overview of all Gstreamer plugins

http://gstreamer.freedesktop.org/documentation/plugins.ht
ml

2.Gstreamer Application Development Manual
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/
manual/html/index.html

